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The problem of developing a formalism of quantum theory, which is both consistent
with the reality of the measurements and with the invariance properties of relativistic
theories, is considered. A solution is found by using a real formulation of quantum
mechanics, such that there exists an interpretation of the real properties of a physical
system at all times. It is demonstrated also that several concepts in quantum field theory
can be recast in a real formalism.
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1. INTRODUCTION

The introduction of an additional structure which distinguishes between the
complex numbers from the real number system and the physical nature of com-
plex quantities does not directly follow from the real dimensions of physical
observation. The definition of the complex numbers with the introduction of the
imaginary unit i such that i2 = −1 or the product of two-component real vectors
(x1, y1) · (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) is based on a condition that cannot
be satisfied by any real number or equivalently a vector with a single component,
which would describe the physical measurement of one dimension. This complex
formalism is only consistent with physical theories when the measurements re-
quire a specification of several data points forming the component of a vector.
An example is the introduction of complex numbers derived from the Lorentzian
structure of space-time through the isomorphism SO(3, 1,↑) = SL(2,C ).

Although it may be convenient to use SL(2, C), the group of orthochronous
transformations SO(3, 1,↑) is sufficient for the description of Lorentz trans-
formations of four-vectors in classical relativitic theories. The 2-1 mapping be-
tween the two groups, where two matrices �A

B = [exp(− 1
2ωab�

ab)]AB , (�ab)AB =
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−σ [a|AA′|σb]
BA′ , and −�A

B correspond to a single Lorentz transformation
�µ

ν = [exp(− 1
2ωab�

ab)]µν , (�ab)µν = − 1
2 [γ a, γ b]µν , is indicative of the intro-

duction of spinors. With two-component spinors, particles and anti-particles are
distinguished by unprimed and primed spinors. The transformation �A

B → �A′
B ′ ,

which interchanges positive and negative energy states and therefore particles and
anti-particles, also can be interpreted as a reversal of the direction of the parti-
cle’s propagation. Enlargement of the transformation group from SO(3, 1,↑) to
SO(3, 1,↑) ∪ SO(3, 1,↓), can be implemented with the matrix(

0 I

−I 0

)
.

It is noted in Section 3 that there is a real basis for the Dirac gamma matrices.
Since the gamma matrices are constructed from van der Waerden symbols, there
exists a set of real matrices which can represent the Lorentz transformation on
spinors and vectors.

The imaginary unit appears to be essential to a description of quantum me-
chanics based on wavefunctions. This feature leads to the Copenhagen interpre-
tation of quantum mechanics for consistency with the reality of measurements.
Nevertheless, a complete fomulation of quantum theory would require an intepre-
tation of the measurements which is invariant under known symmetries such as
translation invariance. The aim of this study is the resolution to the problem of
determination of the real properties of the system by providing a real formalism
of the theory at all times.

In Section 2, the time evolution of the wavefunction is described by a equation
with a real basis of solutions. An essential part of a calculation of the probabilities
of different outcomes of experiments to occur is the superposition principle, which
may be deduced from conservation of relative probabilities. As the constructive or
destructive interference of wavefunctions affects the probabilities, it is necessary
to establish this occurs also in a real formulation of the theory. The real formalism
is then extended to quantum field theory in the third section. In particular, for
scalar field theory, the expansion of the field, the commutation relations of the
new annihilation and creation operators, the number operator and the Hamiltonian
are real. By commuting the time-evolution operator of the scalar field with the
Hamiltonian, time evolution of this field is given by a real operator equation.
Finally, there exists a real form of the scattering matrix, which can be used to
obtain directly finite amplitudes after a subtraction procedure.

2. A REAL FORMULATION OF QUANTUM MECHANICS

The wavefunction in quantum mechanics is generally complex and it is
necessary to add wavefunctions according to the superposition principle to describe
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a mixed state. While the reality of physical observables in quantum mechanics
can be obtained through the hermiticity of the corresponding matrices, as the only
measured quantities are the eigenvalues of these matrices, it would be useful to
establish a formulation of quantum mechanics which is independent of complex
numbers.

There exists a similarity transformation which maps a complex Hermitian
matrix to a real matrix and an operation which transforms a complex operator
equation to a real operator equation. For example the equation i

∂ψ

∂t
= Hψ may

be differentiated to give ∂2ψ

∂t2 + H 2ψ = 0. If the Hamiltonian is time-independent,

this equation is equivalent to ∂2(T ψ)
∂t2 + (T H 2T −1)(T ψ) = 0 where T HT −1 is real.

The real operator equation would have a real basis of solutions.
The superposition principle is a statement of the addition of eigenvectors of

the operator representing the Hamiltonian. It can be deduced from the conservation
of probabilities during the time evolution of a quantum system. Consider two states
described by the wavefunctions ψ1 and ψ2 and a superposition of the two states
ψ1 + ψ2. The sum of the evolved relative probabilities of these two states in the
complex formalism is determined by∫

ψ1(x, t ′)(ψ1(x, t)∗ + ψ2(x, t)∗) d3x +
∫

ψ2(x, t ′)(ψ1(x, t)∗ + ψ2(x, t)∗) d3x

(2.1)
whereas the evolution of the sum of the relative probabilities is given by

∫
(ψ1 +

ψ2) (x, t ′) (ψ∗
1 + ψ∗

2 ) (x, t) d3x. By the time-dependent Schrödinger equation,

ψ(x, t ′) = e−iH (t ′−t)ψ(x, t) (2.2)

and the two expressions respectively are∫
e−iH (t ′−t)ψ1(x, t)(ψ1(x, t)∗ + ψ2(x, t)∗) d3x (2.3)

+
∫

e−iH (t ′−t)ψ2(x, t)(ψ1(x, t)∗ + ψ2(x, t)∗) d3x

∫
e−iH (t ′−t)(ψ1(x, t) + ψ2(x, t))(ψ∗

1 + ψ∗
2 )(x, t) d3x. (2.4)

Conservation of the sum of the relative probabilities requires the equality of
these two expressions or equivalently the linearity of the Hamiltonian operator.
Linearity of the operator also implies that Leibnitz’s property holds, which leads
to an expression for the integral. It follows that if the wavefunction is analytic, the
energy and other physical observables must be represented by linear differential
operators and the superposition principle is valid.

For a real formulation of quantum mechanics to be valid, it is necessary
that the superposition principle continues to hold. Nevertheless, after a similarity
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transformation, it is possible to describe the mixed state by a linear combination
of pure states represented by real wavefunctions with real coefficients. Since the
linearity of the operators can be translated directly to higher-dimensional vector
spaces, it is sufficient to express the solution of the second-order differential
equation for T ψ as a two-component vector

T ψ(x, t ′) =
(

sin(T HT −1(t ′ − t))(T ψ)(x, t)

cos(T HT −1(t ′ − t))(T ψ)(x, t)

)
. (2.5)

The wavefunction of the superposition of two states then would have the form

T (ψ1 + ψ2)(x, t ′) =
(

sin(T HT −1(t ′ − t))(T (ψ1 + ψ2)(x, t)

cos(T HT −1(t ′ − t))(T (ψ1 + ψ2))(x, t)

)
(2.6)

=
(

sin(T HT −1(t ′ − t))(T ψ1(x, t) + T ψ2(x, t))

cos(T HT −1(t ′ − t))(T ψ1(x, t) + T ψ2(x, t))

)

= T ψ1(x, t ′) + T ψ2(x, t ′).

It follows that constructive and destructive interference of the wavefunction occurs
in the linear combination of the real-two component vectors, and the probabilities
by evaluating the norms of the vectors after the summation of the wavefunctions.

In relativistic quantum mechanics, the four-momentum operator is p̂µ =
ih ∂

∂xµ
. Replacing the imaginary unit i by ( 0 I

−I 0 ), this operator becomes

( 0 I
−I 0 ) h ∂

∂xµ
, and the equation p̂µp̂µψ = m2

0c
2ψ is

(
I 0

0 I

)(
� + m2

0c
2

h2

)
ψ = 0. (2.7)

For a real wavefunction satisfying the Klein-Gordon equation, the charge density
vanishes. However, it is possible, with the modifications in the real formalism that
have been introduced, to represent charged particles. The complex current density
(Greiner, 1999) equals

jµ = ieh

2m0c2
(ψ∗∇µψ − ψ∇µψ∗). (2.8)

Since the solutions to the wave equations in a box of volume L3 are

ψ =
√

m0c2

EL3
e−ipµxµ

(2.9)

the substitution of (
0 I

−I 0

)
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for i yields

jµ =
(

0 I

−I 0

)
eh

2m0c2

m0c
2

EL3

[[
cos

(
1

h
pµxµ

)
+
(

0 I

−I 0

)
sin

(
1

h
pµxµ

)]

× ∂

∂xµ

[
cos

(
1

h
pµxµ

)
−
(

0 I

−I 0

)
sin

(
1

h
pµxµ

)]

−
[

cos

(
1

h
pµxµ

)
−
(

0 I

−I 0

)
sin

(
1

h
pµxµ

)]

× ∂

∂xµ

[
cos

(
1

h
pµxµ

)
+
(

0 I

−I 0

)
sin

(
1

h
pµxµ

)]]

= e
pµ

EL3

(
I 0

0 I

)
. (2.10)

In particular, the charge is

Q =
∫

d3xj0 = e

(
I 0

0 I

)
. (2.11)

Interchange of ψ and ψ∗ gives a charge of the opposite sign.
The postulates of quantum mechanics (Galindo and Pascual, 1990) also can

be stated in the real formalism.

I. When a pure state of the quantum system is represented by a unit ray
in a Hilbert space, the conjugate is replaced by transposition. This sub-
stitution includes both the complex and Hermitian conjugates for state
vectors, since the two transformations are equivalent on this wavefunc-
tions. When the wavefunction has several components, it will be an
element in the tensor product of two matrix spaces, and transposition
must be applied to both spaces.

II. In the representation of observables by Hermitian matrices, a real formu-
lation is achieved by similarity transformations which render the matrix
real. The similarity transformations exist in all finite-dimensional spaces.
This property can be extended to infinite dimensions

III. Given that the probability of obtaining a value λ associated with a state
|ψ〉 from a Borel set 
 ⊂ R upon measurement of an observable A is

PA,ψ (
) =‖ EA(
) ‖2 (2.12)

where EA = |ψ〉A|
A|
〈ψ |, the probability also can be expressed as the
squared norm of a two-dimensional vector in the real formalism.
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IV. If the spectrum of A is a subset of a set 
, and the quantum system
is described by the density matrix ρ, then a measurement of A will be
detemined by the density matrix

ρA,
 = 1

Tr[ρEA(
)]

∑
α∈


EMα
ρEMα

. (2.13)

The density matrix, which has the form ρ = ∑
i |ψi〉pi〈ψi |, satisfies the

relations ρ† = ρ, ρ ≥ 0 and ρ ≥ ρ2. The Hermitian condition becomes
ρT = ρ in the real formalism. The last inequality is again satisfied since∫

d3xψT ρ2ψ =
∑
i,j

pipj

∫
d3xψT ψiψ

T
i ψjψ

T
j ψ

≥
∑
i,j

pipj

∫
d3x|ψT ψiψ

T
j ψ |

=
∫

d3x

[∑
i

pi |〈ψi |ψ〉|
]2

≤
∑

i

pi

∫
d3x|ψT

i ψ |2 =
∫

d3xψT ρψ. (2.14)

V. The time-evolution of the wavefunction and density matrix is given by

ih
d

dt
|ψ(t)〉 = H (t)|ψ(t)〉 (2.15)

and

ih
dρ(t)

dt
= [h(t), ρ(t)]. (2.16)

These equations would be replaced by(
0 I

−I 0

)
h

d

dt
|ψ(t)〉 = H (t)|ψ(t)〉 (2.17)

and

−h2 d2ρ

dt2
= [H (t), [H (t), ρ(t)]]. (2.18)

VI. The canonical commutation relations are

[Xi, Pj ] = 0

[Pi, Pj ] = 0 i, j = 1, . . . , N. (2.19)

[Xi, Pj ] = ihδij
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The real form of the commutator of the position and momentum operators
would be

[Xi, Pj ] = h

(
0 I

−I 0

)
δij . (2.20)

It is also known that the imaginary unit always occurs with h in quantum
mechanics, implying that the classical limit h → 0 is always real. It is sufficient
therefore to separate these two quantities in the real description of quantum effects.
Amongst the methods for eliminating the dependence on the imaginary unit are
the squaring of the absolute values of the variables and the substitution of i by the
real antisymmetric matrix.

An example is the uncertainty principle 
x
p ≥ h

2 , which is derived from
[x, p] = ih and an inequality for the square absolute value |〈ψ |(x − 〈x〉)(p −
〈p〉)ψ |2 . Alternatively, from Eq. (2.20), 
Xi
Pj ≥ h

2 δij ( I 0
0 I

), where the prod-

uct of the expectation values includes the matrix product ( 0 I

−I 0 )T( 0 I

−I 0 ).
When the wavefunction ψ(x, t) = Nei/hS(x.t) solves the Schrödinger equa-

tion (Galindo and Pascual, 1990), ih
∂ψ(�x,t)

∂t
= [− h2

2m
∇2 + V (�x)]ψ(�x, t),

∂S

∂t
+ 1

2m
( �∇S) · ( �∇S) + V − ih

2m
∇2S = 0 (2.21)

with the Hamilton–Jacobi equation arising in the h → 0 limit. Both the equation
and the solution, given by S = S0 − ihS1 + (−ih)2S2 + · · ·, also have the factor
of i combined with h.

The imaginary unit may be eliminated either through the replacement of
Eq. (2.21) by

∂S

∂t
+ 1

2m
( �∇S)2 + V − h

2m

(
0 I

−I 0

)
∇2S = 0 (2.22)

where the solution is the product of an analytic function and a 2 × 2 matrix, or with
real equations for the position and momentum variables using Hepp’s procedure
(Hepp, 1974). Let Xh = h

1
2 X̄ and Ph = hh1/2P̄ , and consider the matrix

W (ξ, π ) = exp

[
i

h
(πXh − ξPh)

]
(2.23)

which may be expressed equivalently as

W (ξ, π ) = cos

[
1

h
(πXh − ξPh)

]
+
(

0 I

−I 0

)
sin

[
1

h
(πXh − ξPh)

]
. (2.24)
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It has been proven that

W †(xcl(0), pcl(0))Xh(t)W (xcl(0), pcl(0))
∼

h → 0
xcl(t) + h1/2X̄osc(t)

W †(xcl(0), pcl(0))Ph(t)W (xcl(0), pcl(0))
∼

h → 0
pcl(t) + h1/2P̄osc(t) (2.25)

where (xcl(t), pcl(t)) is the classical trajectory in phase space, dX̄osc(t)
dt

= 1
m

P̄osc(t)

and dP̄osc(t)
dt

= −V ′′(xcl(t))X̄osc(t), with the initial conditions being X̄osc(0) = X

and P̄osc(0) = P (Galindo and Pascual, 1990; Hepp, 1974).
By Wigner’s theorem, the action of any symmetry transformation on a Hilbert

space is a one-to-one linear or anti-linear isometry (Galindo and Pascual, 1990;
Wigner, 1959). For an anti-unitary transformation 〈ψG|φG〉 = 〈ψ |φ〉∗ in the com-
plex formalism. The transposition is the only operation on real matrices other than
the identity which preserves the orthogonality relation OTO = I and which is
an involution. The existence of the involution is necessary for the new state to be
defined symmetrically with respect to a real origin in state space. It can be deduced
in the real formalism that this is the only form of a symmetry transformation other
than the unitary mapping, and therefore the possibility of another complex phase
arising in the transformation is eliminated.

3. QUANTUM FIELD THEORY

A quantum scalar field can be expanded in terms of sine and cosine functions,

φ(x) = 1

(2π )3

∫
d3 �p
2p0

[ac( �p) cos(p · x) + as( �p) sin(p · x)]. (3.1)

When the coefficients ac(p) and as(p) are elevated to operators, the commutation
relations are

[ac( �p), as( �p′)] = −i(2π )3p0δ( �p − �p′)

[ac( �p), ac( �p′)] = 0

[as( �p), as( �p′)] = 0. (3.2)

The equal-time commutation relations for φ and the conjugate momentum �

have been postulated in analogy with [q, p] = ih1. As the uncertainty relation in
quantum mechanics is 
q
p ≥ h

2 , it follows that 
φ(�x, t)
�(�x ′, t) ≥ h

2 δ(�x −
�x ′). The number operator would be

N = 1

(2π )3

∫
d3 �p
2p0

a†( �p)a( �p)

= 1

(2π )3

∫
d3 �p
2p0

[ac( �p) + ias( �p)][ac( �p) − ias( �p)]
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= 1

(2π )3

∫
d3 �p
2p0

[(ac( �p)2 + as( �p)2) + i[as( �p), ac( �p)]]

= 1

(2π )3

∫
d3 �p
2p0

{
(ac( �p)2 + as( �p)2) − 1

2

}
(3.3)

and Hamiltonian is

H = 1

2

1

(2π )3

∫
d3 �p
2p0

p0(a( �p)a†( �p) + a†( �p)a( �p))

= 1

2

1

(2π )3

∫
d3 �p
2p0

p0[[ac( �p) + iac( �p)][ac( �p + iac( �p)]

+ [ac( �p) − iac( �p)][ac( �p) + ias( �p)]]

= 1

(2π )3

∫
d3 �p
2p0

p0(ac( �p)2 + as( �p)2). (3.4)

Although equal-time commutation relations have a factor of i, [φ(�x, t),
�(�x ′, t)] = ihδ(�x − �x ′), leading to the equation ihφ̇ = [φ,H ], the latter relation
can be replaced by

[ihφ̇,H ] = ih
d

dt
[φ,H ] = ih

d

dt
(ihφ̇) = −h2φ̈ = [φ, [φ,H ]]. (3.5)

In the Dirac picture, both the wavefunction and the operators are time-
dependent,

ψ(t) = U (t, t0)ψ(t0)

i
∂U (t, t0)

∂t
= HIU (t, t0) (3.6)

with solution U (t, t0) = T exp(−i
∫ t

t0
dt ′HI ) ≡ T exp(−i

∫ t

t0
dt ′V (t ′)). The S-

matrix then would be S = U (∞,−∞). However, Eq. (3.6) can be differentiated
to give

∂2U (t, t0)

∂t2
+ H 2

I U (t, t0) = 0 (3.7)

and U (t, t0) = c1T cos(
∫ t

t0
dt ′V (t ′)) + c2T sin(

∫ t

t0
dt ′V (t ′)). Instead of an S-

matrix, another operator can be defined

Ŝ = c1T cos

(∫ ∞

−∞
dtV (t)

)
+ c2T sin

(∫ ∞

−∞
dtV (t)

)

= c1T cos

(∫
d4xLI

)
− c2T sin

(∫
d4xLI

)
. (3.8)

In the standard renormalization procedure, counterterms are introduced to
cancel the divergences in the perturbative expansion of the S-matrix. The infinities
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arising from the coincidence of the field operators do not have the same effect on
the Ŝ-matrix, since the trigonometric functions do not diverge. Indeed, consistency
of the Ŝ-matrix formalism follows if the finite part is separated either in the operator
expansion of LI in Eq. (3.8) or the series expansion of Ŝ, and divergent part is
subtracted, while other possible finite renormalizations may be included.

Ŝren = c1T cos

(∫
d4xLI −

∫
d4xLI div

)
− c2T sin

(∫
d4xLI −

∫
d4xLI div

)
.

(3.9)
The two components of Ŝ represent the t → ∞, t0 → −∞ limits of or-

thogonal solutions to Eq. (3.10). If Ŝren is regarded as a two-component column
vector

Ŝren =

⎛
⎜⎜⎜⎝

c1T cos

(∫
d4xLI

)
ren

−c2T sin

(∫
d4xLI

)
ren

⎞
⎟⎟⎟⎠ (3.10)

〈0|Ŝ†
renŜren|0〉 = |c1|2〈0|

(
T cos

∫
d4xLI

)2

ren

|0〉 + |c2|2〈0|
(
T sin

∫
d4xLI

)2

ren

|0〉.

(3.11)

When |c1|2 = |c2|2 = 1, this inner product can be set equal to 1. For a real Ŝren

matrix, c1, c2 are real, and the condition on these coefficients is c2
1 = c2

2 = 1.
Correlation functions then could be defined to be

Ĝ(x1, . . . xn) = D〈0|T φD(x1) . . . φD(xn)Ŝren|0〉D
D〈0|Ŝren|〉D

= D〈0|T φD(x1) . . . φD(xn)
[
c1T cos

(∫
LId

4x
)

ren − c2T sin
(∫

LI d
4x
)

ren

]∣∣0〉
D

D〈0|[c1T cos
( ∫

LI d4x
)− c2T sin

( ∫
LI d4x

)] .

(3.12)

The Green functions are also conventionally derived as varational derivatives
of the partition function Z[J ]. This partition function is real in the Euclidean
formalism, with

ZE[J ] = �E[J ]

�E[0]

�E[J ] =
∫

Dφe− ∫ d4x(L+Jφ). (3.13)

The use of the Wick rotation to Euclidean space is also known to be necessary
in the renormalization of the electric charge, where the vertex graph receives
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higher-loop corrections. At one loop, eūγλu → eū(γλ + �λ)u, where

�λ = −ie2
∫

d4k

(2π )4

γµ(γσ (pσ + kσ ) + m)γλ(γρ(pρ + kρ) + m)γ µ

[(p′ − k)2 − m2 + iε][(p − k)2 − m2 + iε][k2 + iε]
.

(3.14)

To establish that the coefficient F1(q2), q = p′ − p of γλ in �� is real, a Wick
rotation to Euclidean momentum is required, as it introduces an extra factor of i.

The coupling of the electron to the electromagnetic field leads to the intro-
duction of a covariant derivative. Although it is customary to include an imag-
inary unit in the covariant derivative, it is sufficient to use Dµ = ∂µ + eAµ,
as the vector Dµφ, with φ a scalar field, transforms covariantly when Aµ →
g−1∂µg + g−1Aµg. Based on this covariant derivative, the operator in the Pauli
equation (

DµDµ + 1

4
e[γ µ, γ ν][Dµ,Dν] + m2

)
ψ = 0 (3.15)

is clearly real except for the term containing [γ µ, γ ν]. In the Majorana repre-
sentation (Itzykson and Zuber, 1980), γ i is purely imaginary and the commu-
tator [γ i, γ j ] would be purely real. Since [Dµ,Dν]ψ → −eFµνψ , the operator
1
4 [γ i, γ j ][Di,Dj ] is real in this representation. Moreover, the extra term yields
a magnetic moment term in the nonrelativistic limit, and it is consistent with the
reality of the other terms.

The real formulation of the Dirac equation (iγ µ∂µ − m)� = 0 is

γ µ∂µψγ2γ1γ0 − mψ = 0

� = ψu1

u1 =

⎛
⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎠ (3.16)

where the imaginary unit is interpreted to be the generator of rotations in the
spin plane and ψ is a multivector (Hestenes, 1967, 1975). The action of the parity,
charge conjugation and time reversal operators can be defined on the wavefunction
ψ (Hestenes, 1967).

A real form of a quantum field theory can be derived from the identification
of the imaginary unit with [

0 −1

1 0

]
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Felsager (1998), which is the negative of the matrix considered in Section 2. Simi-
larly, another real form of the Dirac equation can be defined with the identification
of the imaginary unit i with [

0 −I

I 0

]
,

where I is a 2 × 2 identity matrix. When a complex scalar field is coupled to an
electromagnetic field, an extra term arises in the current and there is a nonlin-
ear term in the equation of motion. This problem can be circumvented through
the Duffin-Kemmer-Petiau equation (Petiau, 2006; Kemmer, 1938, 1939; Duffin,
1938; Dreschler and Mayer, 1977)

(iβk∂k − m)u = 0 (3.17)

where {βk} are 5 × 5 real matrices. The identification of the imaginary unit with
an antisymmetric matrix is valid only if the order of the matrix is even. If {βk} is
trivially extended to a 6 × 6 matrix, and the spinor u is replaced by a six-component
spinor, this equation can be cast in entirely real form with the identification of i

with ( 0 −I3

I3 0
)

The quantization of the Dirac action can be extended to perturbation theory
by using the inverse of the differential operator for the propagator. For the first
formulation, it would be[

− γ µpµγ2γ1γ0 − m

(
I 0

0 I

)]−1

(3.18)

given that a Laplace transform is used to derive the momentum space rules, while
in the second formulation, it is[

−
(

0 −I

I 0

)
γ µpµ − m

(
I 0
0 I

)]−1

. (3.19)

These expressions can be fully evaluated in a series expansion with terms con-
taining matrix products and would be included in the calculations of perturbation
theory.

4. CONCLUSION

The formulation of physical models in terms of complex variables leads to the
problem of the reality of quantities in the theory. In quantum mechanics, one of the
physical consequences of the complex numbers is the superposition of complex
wavefunctions to describe a mixed state. However, with the diagonalization of the
Hermitian matrices representing the maximal set of simultaneously measurable
physical observables, it becomes a real superposition of orthogonal states described
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by real wavefunctions. While these wavefunctions would have two components
for the sine and cosine functions, further work may lead to a real formalism of
quantum theory which is not based strictly on the isomorphism between C and R

2.
For example, in the Appendix, it is shown that the category of complex numbers
can be defined in terms of a function of the real numbers and that it may be done
without resorting to multi-component vectors. In quantum field theory, the field
can be expanded in terms of sine and cosine functions. This yields a formula for
the Ŝ-matrix and for the correlation functions involving trigonometric functions.
The finiteness of the trigonometric function with infinite argument provides a
regularization of short-distance divergences and implies that divergences in the
Ŝ-matrix can be removed in the argument.

APPENDIX

The category of complex numbers can be defined by a condition which can
be imposed on real numbers and not vectors with more than one component. It
will be demonstrated also that there is a class of functions of a complex variable
which satisfies the properties of a functor, distinguishing between complex and
real numbers. These results provide a link between a complex and an intrinsically
real formulation of quantum mechanics.

Consider three sets,

C1 = {z|z2 + |z2| = 0}
C2 = {z|2|z|2 > z2 + |z2| > 0}
C3 = {z|z2 + |z2| = 2|z|2}. (A.1)

Then C = C1 ∪ C2 ∪ C3 is a category such that there exist mappings

φ1 : C1 × C1 → C3

φ2 : C1 × C2 → C2

φ3 : C1 × C3 → C1

φ4 : C2 × C2 → C1 ∪ C2 ∪ C3

φ5 : C2 × C3C2

φ6 : C3 × C3 → C3. (A.2)

The set of mappings {φ1} ∪ . . . ∪ {φ6} are functors.
An ordered set based on the real numbers can be regarded as a category

(Pareigis, 1970). The set defined by the ordered pairs (a, b) with the morphism
given by η(a, b) = (a, b) if a ≤ b and η(a, b) = 0 if a ≥ b is isomorphic to half of
the complex plane. Consider also the set defined by the ordered pairs (a, b), with
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the morphism η̃(a, b) = (a, b) if a ≥ b and φ otherwise. The union of the two sets
together with both types of morphisms yields the category of complex numbers.

The geometrical description of the complex numbers by a function of the real
numbers follows from the derivation of the properties of a function of a complex
variable from the characteristics of a real function and the compactification of the
real axis to a circle with −∞ and ∞ identified.

The transition from the complex to the real variable may be deduced from

the equality between the imaginary unit i and
√

1/0+
1/0− or equivalently the square

root of the limit of the ratio of x tending to zero in opposite directions. Regarding
the limit as a map from a point in the neighbourhood of zero to zero, the square
root of the limit would be a map that point in a neighbourhood to another point.
Since the square root map must be performed twice to reach the origin, it must be
defined such that both square root limits tend towards the third. This would imply
the existence of a limit point of the square root map which does not belong to the
real numbers. By L’Hopital’s rule, the square root limit of the ratio of derivatives
of two function would be equal to the square root limit of the ratio of the functions.
Based on the ratio to a standard function, all of the derivatives can be defined at i

and the function in a neighbourhood of i. The overlapping of neighbourhoods can
be used to define the function on a domain in the complex plane.

Consider, for example, the function

F (z) = z + 1

z
+ 1

z + 1
z

+ 1

z + 1
z

+ 1
z+ 1

z

+ · · · . (A.3)

Since the sequence {Fn} defined by the truncation of the series at the nth term
satisfies the recursion relation Fn+1 = Fn + 1

Fn
and the series diverges for real

values of z ≥ 1. The series also diverges for positive values of z between 0 and 1,
since F (1/z) = F (z). For negative values of z, the function equals −∞ and it is
infinite for all z ∈ R.

If z = αi,

F (αi) = αi + 1

αi
+ 1

αi + 1
αi

+ · · ·

= i

(
α − 1

α

)
+ 1

i
(
α − 1

α

) + 1

i
(
α − 1

α
− 1

α− 1
α

) + · · · (A.4)

and F (αi) has poles when

α − 1

α
= 0

α − 1

α
− 1

α − 1
α

= 0
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α − 1

α
− 1

α − 1
α

− 1

α − 1
α

− 1
α− 1

α

= 0

... (A.5)

with solutions

±1

1 ± √
5

2
,
−1 ± √

5

2

1

4

⎡
⎣1 +

√
5 ±

√
7 +

√
5

2

⎤
⎦ ,

1

4

⎡
⎣1 −

√
5 ±

√
7 −

√
5

2

⎤
⎦ (A.6)

... (A.7)

Although the terms at finite order for α located away from these poles are
finite, they increase in magnitude since (((α − 1

α
)2 − 1)2 − 1)2 . . . converges to

zero if α − 1
α

< 1+√
5

2 and ∞ if α − 1
α

> 1+√
5

2 .
If the circle is the cut and continued to form a spiral, this would provide

a representation of the values of the function on real axis, beginning with the
first point representing ∞, given that F (1) = 1

0+ , F (−1) = 1
0− . A segment of the

spiral then can be mapped to the circle |z| = 1, yielding a geometrical description
of complex numbers of unit magnitude. Complex numbers of magnitude n then
may be mapped bijectively onto the segment of the spiral with endpoints F (2n −
3) and F (2n − 1). The complex numbers with rational magnitude would equal
fractions of the the complex numbers with integer magnitude. The remaining
complex numbers would be derived through the method of Cauchy completion of Q

into R.
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